Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majority Voting
نویسندگان
چکیده
We propose a novel approach for automatic segmentation of anatomical structures on 3D CT images by voting from a fully convolutional network (FCN), which accomplishes an end-to-end, voxel-wise multiple-class classification to map each voxel in a CT image directly to an anatomical label. The proposed method simplifies the segmentation of the anatomical structures (including multiple organs) in a CT image (generally in 3D) to majority voting for the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. An FCN consisting of “convolution” and “de-convolution” parts is trained and re-used for the 2D semantic image segmentation of different slices of CT scans. All of the procedures are integrated into a simple and compact all-in-one network, which can segment complicated structures on differently sized CT images that cover arbitrary CT scan regions without any adjustment. We applied the proposed method to segment a wide range of anatomical structures that consisted of 19 types of targets in the human torso, including all the major organs. A database consisting of 240 3D CT scans and a humanly annotated ground truth was used for training and testing. The results showed that the target regions for the entire set of CT test scans were segmented with acceptable accuracies (89 % of total voxels were labeled correctly) against the human annotations. The experimental results showed better efficiency, generality, and flexibility of this end-to-end learning approach on CT image segmentations comparing to conventional methods guided by human expertise.
منابع مشابه
Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.
PURPOSE We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. METHODS We simplify the segmentat...
متن کاملAutomated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach
We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structure segmentation on 3D CT images into ...
متن کاملCombining Fully Convolutional and Recurrent Neural Networks for 3D Biomedical Image Segmentation
Segmentation of 3D images is a fundamental problem in biomedical image analysis. Deep learning (DL) approaches have achieved state-of-the-art segmentation performance. To exploit the 3D contexts using neural networks, known DL segmentation methods, including 3D convolution, 2D convolution on planes orthogonal to 2D image slices, and LSTM in multiple directions, all suffer incompatibility with t...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملLearning normalized inputs for iterative estimation in medical image segmentation
In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and examine a design that takes particular advantage of recent advances in the understanding of both Convolutional Neural Networks as well as ResNets. Our approach focuses upon the importa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016